
Techniques to solve computationally hard problems in
automata theory

Richard Mayr

University of Edinburgh, UK

IST Austria, Vienna, 4. Nov. 2014

Resources: www.languageinclusion.org

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 1 / 45



Outline

1 Computationally Hard Automata Problems

2 Antichain Techniques

3 Bisimulation Modulo Congruence

4 Automata Minimization

5 Benchmarks

6 Language Inclusion Checking by Minimization

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 2 / 45



Automata

We consider automata which are

Nondeterministic

Finite-state

Accepting words (for generalization to trees see libvata, etc.)

Finite words vs. infinite words

NFA: Automata accepting finite words. Like in undergraduate class.
Regular languages.

Büchi automata: Automata accepting infinite words.
Word w ∈ Σω is accepted iff
there is a run on w that visits an accepting state infinitely often.
(∃ run ρ on w s.t. inf (ρ)∩F 6= /0.)
ω-regular languages.
Büchi automata are not determinizable, but still closed under complement.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 3 / 45



Hard Problems

Minimization: Given an automaton A. What is the minimal size of an
automaton A′ s.t. L(A) = L(A′) ?
(The minimal-size automaton for a given language is not unique, in general.)

Inclusion: Given two automata A, B. Is L(A)⊆ L(B) ?

Equivalence: Given two automata A, B. Is L(A) = L(B) ?

Universality: Given an automaton A. Is L(A) = Σω (resp. Σ∗) ?

All these problems are PSPACE-complete.

But this is no reason not to solve them.
Think of NP-complete problems and SAT-solvers.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 4 / 45



Automata and Software Verification

Comparing control-flow graphs of specification and implementation.
Does the implementation only behave in a way allowed by the
specification?
−→ Language inclusion problem.

Termination analysis.
Size-change termination proofs work by abstracting data via a function.
Does this function decrease infinitely often along every infinite
computation? Then the program must terminate.
−→ Language inclusion problem.

Model checking.
Temporal logic formulae translated into automata (e.g., LTL).
Or representing large sets of configurations by regular languages.
−→ Automata minimization problem.

Decision procedures for logical theories.
Automata represent denotations of formulae. Small is beautiful.
−→ Automata minimization problem.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 5 / 45



Antichain Techniques

Universality problem for NFA A = (Q,Σ,δ,q0,F). Is L(A) = Σ∗ ?
Search for a counterexample, i.e., a word that is not accepted.
Powerset construction on the fly. Start from {q0} and explore reachable
macrostates S ⊆ Q. If S∩F = /0 then S is a rejecting macrostate, and we have
found a counterexample.
The number of macrostates is exponential. How to narrow the search space?
Subsumption: A special case of logical redundancy.
Suppose we have two macrostates S,S′ with

S ⊂ S′

Then every counterexample (i.e., reachable rejecting macrostate) that can be
found from S′ can also be found from S.
Why? The successor relation on macrostates is monotone w.r.t. set inclusion.
So S is “better” than S′, i.e., S subsumes S′ and S′ can be discarded from the
search.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 6 / 45



Antichain Techniques

Antichain Algorithm
Search reachable macrostates and keep a record of the states explored so far.
Discard all macrostates that are subsumed by previously generated ones.
If you find a macrostate state S with S∩F = /0 return false.
Otherwise, return true.

Since subsumed macrostates are discarded, all recorded macrostates are
incomparable, i.e., they form an antichain w.r.t. the given relation that is used to
compare them.
The hope is that, for the given automaton, the antichain is small.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 7 / 45



Better subsumption relations

How much subsumption helps depends on how large the subsumption relation
is, i.e., how many macrostates are comparable.
Larger subsumption relation −→ Smaller antichain.
Can one use more than just set inclusion?
Suppose we have a relation v on Q (i.e., on states, not macrostates) s.t.
q v q′ ⇒ L(q)⊆ L(q′).
Lift this relation to macrostates (à la Plotkin):

S v∀∃ S′ ⇔ ∀q ∈ S.∃q′ ∈ S.q v q′

Since L(S) =
⋃

q∈S L(q) we have that

S v∀∃ S′ ⇒ L(S)⊆ L(S′)

For finding counterexamples to universality, S subsumes S′, because on
macrostates (i.e., DFA) language inclusion is monotone w.r.t. transition steps.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 8 / 45



Approximating language inclusion
Ideally, we want to find a relation v on Q s.t.

q v q′ ⇒ L(q)⊆ L(q′)

It should be

As large as possible.

Efficiently computable.

These are conflicting goals.

Smallest relation: Just identity. Very efficient, but then v∀∃ is just set
inclusion. (I.e., we get basic subset-subsumption as before).

Largest relation: Language inclusion itself. PSPACE-complete. (We are
running around in circles, since language inclusion is the problem we want
to solve.)

Compromise: Simulation preorder. q′ needs to imitate the behavior of q
stepwise. PTIME-computable, but larger than identity.
Generalized simulations (multipebble, lookahead) trade higher computation
time for a larger relation. (Later in this talk.)

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 9 / 45



Antichain Techniques for Büchi Automata

Checking universality of a nondeterministic Büchi automaton A. By a theorem
of Büchi, we have

L(A) 6= Σω

iff
∃w1,w2 ∈ Σ+. w1(w2)ω /∈ L(A)

So we can limit the search to a regular counterexample to universality.
Ramsey-based technique: Generate graphs G ⊆ Q×Q that characterize the
behavior of A.
Intuition: For L⊆ Σ+, GL contains an edge (q,q′) iff ∃w ∈ L.q

w−→ q′.
A counterexample is witnessed by two graphs GL1 and GL2 that satisfy certain
conditions.
Explore the space of these graphs and use a subsumption relation to narrow
the search space.
Subsumption relations based on backward/forward simulation by [Mayr,
Abdulla, Chen, Clemente, Holik, Hong, Vojnar: CONCUR’11]. Very technical.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 10 / 45



Antichain summary

A glorified search for a counterexample.

Use subsumption relation to compare elements and prune the search
space.

Comparison is one-on-one. Discard one element, because one single
other element is better.

Stored/explored elements from an antichain w.r.t. the subsumption
relation.

Bigger subsumption relation makes more elements comparable. Fewer
elements to compare. Shorter antichain on given instance.

Previous slides explained the concept for universality testing, but it generalizes
easily to language inclusion testing L(A)⊆ L(B). Explored elements
additionally contain states of A.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 11 / 45



Bisimulation Modulo Congruence [Bonchi-Pous:POPL’13]
Given an NFA A and states q1,q2 ∈ Q. Check L(q1) = L(q2).

Explore pairs of macrostates (S1,S2) reachable from ({q1},{q2}).
They need to satisfy L(S1) = L(S2) or else there is a counterexample. In
particular, S1,S2 need to agree on acceptance.

Maintain sets of macrostates Explored and toExplore.

Main idea to reduce the search space: The set of pairs Explored , toExplore
induces a congruence ≡. If for a given pair of macrostates (S1,S2) we have
S1 ≡ S2, then it can be discarded. Why? Either L(S1) = L(S2) or a shorter
counterexample can be found elsewhere.

Example: Let (X1,X2),(Y1,Y2) ∈ Explored . Then X1∪Y1 ≡ X2∪Y2.

How to check the relation ≡ ? Consider Explored , toExplore as a set of rewrite
rules and reduce pairs of macrostates to a normal form.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 12 / 45



Antichains vs. Bisimulation Modulo Congruence

Both are a glorified search for a counterexample.

Antichains Congruence
One element subsumed by one other One element subsumed by

combination of many others
Subsumption easy to check Subsumption computationally harder
Fewer elements discarded More elements discarded
Hope for short antichain Hope for small congruence base
NFA and Büchi automata Only NFA (so far)

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 13 / 45



Automata Minimization

Given an automaton A. Find a smaller automaton A′ s.t. L(A) = L(A′).
(Not necessarily the smallest.)

Algorithmic tradeoff between minimization effort and time for subsequent
computations.

Extensive minimization only worthwhile if hard questions are to be solved,
e.g., inclusion, equivalence, universality, LTL model-checking.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 14 / 45



Minimization Techniques

Removing dead states. Remove states that cannot be reached, and
states that cannot reach any accepting loop. (Trivial.)

Quotienting. Find an equivalence relation ≡ on the set of states. Merge
equivalence classes into single states, inheriting transitions, and obtain a
smaller automaton A/≡.
If L(A/≡) = L(A) then ≡ is called good for quotienting (GFQ).

Transition pruning. Some transitions can be removed without changing the
language. This yields new dead states that can be removed.
But how to find these superfluous transitions, without trial and error?
Idea: Find a suitable relation R to compare transitions.
Remove all transitions that are R-smaller than some other transition.
If this preserves the language then R is called good for pruning (GFP).
Problem: Relation R might be hard to compute. Removing transitions
might change R. Need to remove transitions in parallel.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 15 / 45



Minimization Techniques

Removing dead states. Remove states that cannot be reached, and
states that cannot reach any accepting loop. (Trivial.)

Quotienting. Find an equivalence relation ≡ on the set of states. Merge
equivalence classes into single states, inheriting transitions, and obtain a
smaller automaton A/≡.
If L(A/≡) = L(A) then ≡ is called good for quotienting (GFQ).

Transition pruning. Some transitions can be removed without changing the
language. This yields new dead states that can be removed.
But how to find these superfluous transitions, without trial and error?
Idea: Find a suitable relation R to compare transitions.
Remove all transitions that are R-smaller than some other transition.
If this preserves the language then R is called good for pruning (GFP).
Problem: Relation R might be hard to compute. Removing transitions
might change R. Need to remove transitions in parallel.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 15 / 45



Minimization Techniques

Removing dead states. Remove states that cannot be reached, and
states that cannot reach any accepting loop. (Trivial.)

Quotienting. Find an equivalence relation ≡ on the set of states. Merge
equivalence classes into single states, inheriting transitions, and obtain a
smaller automaton A/≡.
If L(A/≡) = L(A) then ≡ is called good for quotienting (GFQ).

Transition pruning. Some transitions can be removed without changing the
language. This yields new dead states that can be removed.
But how to find these superfluous transitions, without trial and error?
Idea: Find a suitable relation R to compare transitions.
Remove all transitions that are R-smaller than some other transition.
If this preserves the language then R is called good for pruning (GFP).
Problem: Relation R might be hard to compute. Removing transitions
might change R. Need to remove transitions in parallel.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 15 / 45



Minimization Techniques

Removing dead states. Remove states that cannot be reached, and
states that cannot reach any accepting loop. (Trivial.)

Quotienting. Find an equivalence relation ≡ on the set of states. Merge
equivalence classes into single states, inheriting transitions, and obtain a
smaller automaton A/≡.
If L(A/≡) = L(A) then ≡ is called good for quotienting (GFQ).

Transition pruning. Some transitions can be removed without changing the
language. This yields new dead states that can be removed.
But how to find these superfluous transitions, without trial and error?
Idea: Find a suitable relation R to compare transitions.
Remove all transitions that are R-smaller than some other transition.
If this preserves the language then R is called good for pruning (GFP).
Problem: Relation R might be hard to compute. Removing transitions
might change R. Need to remove transitions in parallel.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 15 / 45



Minimization Techniques

Removing dead states. Remove states that cannot be reached, and
states that cannot reach any accepting loop. (Trivial.)

Quotienting. Find an equivalence relation ≡ on the set of states. Merge
equivalence classes into single states, inheriting transitions, and obtain a
smaller automaton A/≡.
If L(A/≡) = L(A) then ≡ is called good for quotienting (GFQ).

Transition pruning. Some transitions can be removed without changing the
language. This yields new dead states that can be removed.
But how to find these superfluous transitions, without trial and error?
Idea: Find a suitable relation R to compare transitions.
Remove all transitions that are R-smaller than some other transition.
If this preserves the language then R is called good for pruning (GFP).
Problem: Relation R might be hard to compute. Removing transitions
might change R. Need to remove transitions in parallel.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 15 / 45



Transition Pruning with Semantic Preorders

Compare transitions s
a−→ t and s′

a−→ t ′ by comparing their source and target.

s′ t ′

s t

a

a

backward < forward <

If s′ is backward-bigger than s, and
t ′ is forward-bigger than t then
consider s′

a−→ t ′ as bigger than s
a−→ t and

remove the superfluous transition s
a−→ t .

But does this preserve the language?
Which semantic relations are suitable for backward-bigger and forward-bigger?

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 16 / 45



Comparing States of Automata

Simulation: s v t iff t can match the computation of s stepwise.
Simulation game: Spoiler moves s

a−→ s′.
Duplicator replies t

a−→ t ′.
Next round of the game starts from s′, t ′.
Simulation preorder is polynomial.

Trace inclusion: s ⊆ t iff t has at least the same traces as s.
Trace game: Spoiler chooses a trace s

a1−→ s1
a2−→ s2 . . . .

Duplicator replies with a trace t
a1−→ t1

a2−→ t2 . . . .
Trace inclusion is PSPACE-complete.

Trace inclusion is generally much larger than simulation, but hard to compute.

Backward simulation/traces defined similarly with backward steps.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 17 / 45



Acceptance Conditions

Direct: If Spoiler accepts then Duplicator must accept immediately.

Delayed: If Spoiler accepts then Duplicator must accept eventually
(i.e., within finitely many steps in the future, but there is no fixed
bound).

Fair: If Spoiler accepts infinitely often then Duplicator must accept
infinitely often.
(This is a weaker condition than delayed. If Spoiler accepts only
finitely often then Duplicator has no obligations.)

This yields semantic preorders of direct/delayed/fair simulation and trace
inclusion.
Preorders induce equivalences by considering both directions.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 18 / 45



Delayed/Fair Simulation is not Good-for-Pruning

p qa

a,b a

q @de p, so the transition p
a−→ p looks larger than p

a−→ q.
However, removing the dashed transition p

a−→ q makes the language empty.

Special case: Suppose the larger remaining transition is transient (can be
used at most once). Then delayed/fair simulation (and even language
inclusion) is good for pruning.
Let x

a−→ p and x
a−→ q s.t. p ⊂f q and x

a−→ q is transient, then x
a−→ p can

be removed.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 19 / 45



Pruning with Direct Forward and Backward Trace Inclusion
is Incorrect

p0 q0 r0 s0

p1 q1 r1 s1

a

c
b

a a a
a,d

a
a

a,c

a b

a a a
a

a

d

e

⊂
bw

⊂
di ⊂
bw ⊂
di

If the ‘smaller’ dashed transitions are removed then the word aaaaaeω is no
longer accepted.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 20 / 45



Pruning w.r.t. Direct Forward Trace Inclusion

p

p0

p1

a

a

⊂
di

This generalizes [Bustan, Grumberg] who use direct forward simulation.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 21 / 45



Pruning w.r.t. Direct Backward Trace Inclusion

p

p0

p1

a

a
⊂

bw

This generalizes [Bustan, Grumberg] who use direct backward simulation.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 22 / 45



Pruning w.r.t. Direct Backward Simulation and Forward
Trace Inclusion

r0 s0

r1 s1

a

a
@

bw ⊆
di

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 23 / 45



Pruning w.r.t. Direct Backward Trace Inclusion and Forward
Simulation

r0 s0

r1 s1

a

a
⊆

bw

@
di

One can have backward simulation and forward trace-inclusion, or vice-versa,
but not both trace-inclusions.
Simulation is preserved stepwise, unlike trace-inclusion.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 24 / 45



Quotienting

Forward/backward direct simulation/trace-equivalence is good for
quotienting (GFQ).

Fair simulation/trace-equivalence is not GFQ.

Delayed simulation is GFQ, but delayed trace inclusion is not GFQ.

Delayed multipebble simulation [Etessami] allows Duplicator to hedge his
bets in the simulation game, yielding a larger relation. GFQ, but hard to
compute (exponential in the number of pebbles).

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 25 / 45



Computing Semantic Preorders

One would like to use

Direct backward/forward trace inclusion for pruning (and quotienting).

Multipebble delayed simulation for quotienting.

But these are hard to compute (PSPACE-complete membership problem).

Idea: Compute good under-approximations of these relations.

k -Lookahead-simulations:

Play a simulation game where Duplicator has information about Spoiler’s
next k moves.

Higher lookahead k yields larger relations, but is harder to compute.

Many possible ways of defining lookahead. Most are very bad.

Idea: Degree of lookahead is dynamically under the control of Duplicator,
i.e., use only as much as needed (up-to k ).
Efficient computation and large relations.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 26 / 45



Generalized Simulations

Simulations can be seen as polynomial-size locally checkable certificates,
witnessing the larger relation of trace-inclusion.
Polynomial time computable, but normally much smaller than trace-inclusion.
Extensions:

Multipebble simulation: [Etessami]. Duplicator has several pebbles and can
hedge his bets, i.e., keep his options open.
Exponential time (and space!) in the number of pebbles used.
Even for just 2 pebbles, one needs at least cubic time and space.
Not practical for large automata.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 27 / 45



Lookahead Simulations
k -step simulation: Spoiler announces k steps. Duplicator replies with k steps.

Space efficient computation. Too many cases of k steps. Too
inflexible: Lookahead is not used where it is most needed.

k -continuous simulation: Duplicator is always kept informed of Spoiler’s next k
steps.
Larger relation.
Still too inflexible: lookahead often used where it is not needed.
Hard to compute: Game graph size n2 ∗dk . Too much
space/time.

k -lookahead simulation: Spoiler announces k steps. Duplicator chooses
m : 1≤m ≤ k and replies to the first m steps.
Remaining Spoiler steps are forgotten. Next round.
Space efficient. Lookahead dynamically under Duplicator’s
control and used where it is most needed.
Computational advantage: Spoiler builds his long move
incrementally. Duplicator can reply to a prefix and win the round
immediately. The maximal lookahead is rarely used.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 28 / 45



Lookahead vs. Pebbles

Neither k -lookahead simulation nor k -pebble simulation is transitive in
general.
Use their transitive closure.

k -lookahead simulation and k -pebble simulation are incomparable, but
n-pebble simulation subsumes all others (for automata with n states).
Even stronger incomparable cases: 2 pebbles and arbitrary lookahead.
n−1 pebbles and 2-lookahead.

One can express k -lookahead simulation in terms of pebbles.
Duplicator can use the maximal number n of pebbles, but
after at most k steps (earlier is allowed) Duplicator has to commit to just
one pebble. Then he can use maximal pebbles again.

Combinations are possible, e.g., 2-pebble k-lookahead simulation, but on
average it is not worth it. On average, a limited time budget is better
invested in a higher lookahead, not pebbles.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 29 / 45



Density of Simulation Relations

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

4000 n=100, td=1.8, ad=0.1

Fair

Delayed

Direct

Backward

Lookahead

P
a

ir
s

 o
f s

ta
te

s
 in

 s
im

u
la

tio
n

 r
e

la
tio

n

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

4000 n=100, td=1.8, ad=0.9

Fair

Delayed

Direct

Backward

Lookahead

P
a

ir
s

 o
f s

ta
te

s
 in

 s
im

u
la

tio
n

 r
e

la
tio

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 30 / 45



Benchmarks
GOAL: Best effort of previous methods. Quotienting/pruning w.r.t.

backward/forward simulation. Delayed simulation quotienting.
Fair simulation minimization of [Gurumurthy, Bloem, Somenzi].

Heavy-12: Our transition pruning and quotienting methods with lookahead
simulations of lookahead 12. Much faster than GOAL.

Test cases.

Protocols: Automata derived from protocols like Peterson, Fischer, Phils,
Bakery, Mcs. Heavy-12 minimizes better and faster than GOAL;
see table in paper.

LTL formulae: Consider large (size 70) LTL-formulae, transformed into Büchi
automata by LTL2BA and minimized by GOAL.
82% can be minimized further by Heavy-12.
Average reduction ratio 0.76 for states and 0.68 for transitions.

Tabakov-Vardi random automata: Binary alphabet.
Transition density = #transitions/(# states * # symbols).
Acceptance density 0.5 (does not matter much).

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 31 / 45



Benchmark: Remove dead states

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

RD

Transition density

N
um

b
e

r 
o

f 
st

at
e

s 
af

te
r 

m
in

im
iz

at
io

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 32 / 45



Benchmark: Remove dead + quotient with delayed sim

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

RD

RD+delayed

Transition density

N
um

b
e

r 
o

f 
st

at
e

s 
af

te
r 

m
in

im
iz

at
io

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 33 / 45



Benchmark: Best effort of GOAL

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

RD

RD+delayed

GOAL

Transition density

N
um

b
e

r 
o

f 
st

at
e

s 
af

te
r 

m
in

im
iz

at
io

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 34 / 45



Benchmark: Heavy-12

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

RD

RD+delayed

GOAL

Heavy-12

Transition density

N
um

b
e

r 
o

f 
st

at
e

s 
af

te
r 

m
in

im
iz

at
io

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 35 / 45



Benchmark: Heavy-12 plus jumping simulation

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

RD

RD+delayed

GOAL

Heavy-12

Heavy-12 jump

Transition density

N
um

b
e

r 
o

f 
st

at
e

s 
af

te
r 

m
in

im
iz

at
io

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 36 / 45



Benchmark: Best. Lookahead 19 plus jumping simulation

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

RD

RD+delayed

GOAL

Heavy-12

Heavy-12 jump

Heavy-19 jump

Transition density

N
um

b
e

r 
o

f 
st

at
e

s 
af

te
r 

m
in

im
iz

at
io

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 37 / 45



The Effect of Lookahead

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

The effect of lookahead: Heavy k for k=1,...,12

1.6

1.7

1.8

1.9

2

Lookahead

R
e

m
ai

n
in

g
 n

u
m

be
r 

of
 s

ta
te

s 
af

te
r 

m
in

im
iz

at
io

n

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 38 / 45



Computation Time

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 101112

Average computation time for minimization with Heavy-k

n=100, alphabet size=2, ad=0.5,

TD

Ti
m

e(
m

s)

Lookahead

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 39 / 45



Scalability

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

Scalability of Heavy-12 Minimization

Average size of minimized automata in % of original

Td=1.4
Td=1.6
Td=1.8
Td=2.0

Number of states of original automaton (ad=0.5, separate curves for different td)S
iz

e 
of

 m
in

im
iz

ed
 a

ut
om

at
on

 in
 p

er
ce

nt
 o

f 
or

ig
in

al

Minimization of Tabakov-Vardi random automata with ad = 0.5, |Σ|= 2, and
increasing n = 50,100, . . . ,1000. Different curves for different td . Average size
of the Heavy-12 minimized automata, in percent of their original size.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 40 / 45



Scalability (cont.)
Minimize Tabakov-Vardi automata with transition density 1.4, 1.6, 1.8, 2.0.
The size increases from n = 50 to n = 1000 states.
Plot the time and compute the best fit of the function time = a∗nb.
This yields exponents b between 2.05 and 2.39. Almost quadratic
average-case complexity.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  200  400  600  800  1000

ti
m

e
 i
n
 m

s

 Average time for Heavy-12 minimization for td=1.4,1.6,1.8, 2.0 with y=a*x
b
 fit.

td=1.4 fit
td=1.4 data

td=1.6 fit
td=1.6 data

td=1.8 fit
td=1.8 data

td=2.0 fit
td=2.0 data

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 41 / 45



Language Inclusion Checking

Checking language inclusion L(A)⊆ L(B) of Büchi automata.

Explicit or implicit complementation of B.

Rank-based, Ramsey-based, Slice-based, Safra-Piterman.

A glorified search for a counterexample to inclusion.

On-the fly constructions.

Subsumption techniques. We don’t need to explore X , because we
explore Y which is better.
Forward/backward simulation preorders used to help in subsumption.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 42 / 45



Language Inclusion Checking by Minimization

Checking language inclusion L(A)⊆ L(B) of Büchi automata.

Minimize A and B together.

(Generalized) simulations can witness inclusion already at this stage (if
inclusion holds). This happens very often.

Additional pruning techniques: Discard some parts of A and B that don’t
affect a counterexample (even if this changes the languages of A,B).

Witnessing inclusion by jumping lookahead fair simulation. Duplicator can
jump to states that are (direct/counting/segmented) backward-trace larger
than his current state.

If inclusion was not proven yet, then use a complete technique on the now
smaller instance A′, B′.

Can check inclusion of Tabakov-Vardi Büchi automata with 1000 states.
Success rate 98%−100%, depending on density. Much better than previous
techniques.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 43 / 45



NFA

Minimization/Inclusion techniques carry over to NFA, using only direct
simulation.

Transform automata into a form with only one absorbing accepting state.
Otherwise the direct (lookahead-)simulations are too small.

Simulations are global relations: Since NFA’s are conceptually simpler,
there is more competition from local techniques.

Antichain techniques: Search for a counterexample with subsumption
(e.g., libvata on word/tree automata). Worst-case exponential time/space.
Time is quadratic in the final size of the store.

Bisimulation modulo congruence (Bonchi & Pous). Current store can
collectively subsume a new element. Worst-case exponential time/space.
Cubic time in the final size of the store, but much smaller store size.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 44 / 45



Conclusion

Minimize automata with transition pruning, not only quotienting.

Compute good approximations of trace-inclusion and
multipebble-simulation by lookahead-simulations.

Much better automata minimization.

Can check inclusion for much larger Büchi automata.
Techniques carry over to NFA, but

I Good NFA minimization.
I NFA inclusion/equivalence checking: Since NFA are simpler, computing

global relations like simulation is not always worth the effort.

Links and tools available at www.languageinclusion.org
Büchi automata, NFA, Tree-automata.

Mayr (Edinburgh) Hard Problems in Automata Theory Vienna, 4. Nov. 2014 45 / 45


	Computationally Hard Automata Problems
	Antichain Techniques
	Bisimulation Modulo Congruence
	Automata Minimization
	Benchmarks
	Language Inclusion Checking by Minimization

